language
中国
韩国
韩国
韩国
韩国
韩国

PRODUCTS

 

MESSAGES

Username used for comment:
Customer message
Description:
Customer message

Related Items

/
/
/
-
KTP - Potassium Titanyl Phosphate
1/1
Number of views:
1000

KTP - Potassium Titanyl Phosphate

KTP is the most commonly used material for SHG of Nd-doped lasers, and also for SFG to generate blue&red light. In addition to these functions, it is also applied to OPO, E-O devices and waveguides.
Number of views:
1000
Quantity
-
+
1
Description
Parameters
Cas'Tech Class
Parameters

Introduction

Potassium Titanyl Phosphate (KTiOPO4 or KTP) is widely used in both commercial and military lasers including laboratory and medical system, range-finders, LiDAR, optical communication and industrial systems.

  

CASTECH's KTP is featured by

  •   Large nonlinear optical coefficient
  •   Wide angular bandwidth and small walk-off angle
  •   Broad temperature and spectral bandwidth
  •   High electro-optic coefficient and low dielectric constant
  •   Large figure of merit
  •   Nonhydroscopic, chemically and mechanically stable

  

CASTECH offers

  •   Strict quality control
  •   Large crystal size up to 20 × 20 × 40 mm3 and maximum length of 60 mm
  •   Quick delivery (15 working days for polished only, 20 working days for coated)
  •   Unbeatable price and quantity discount
  •   Technical support
  •   AR-coating, mounting and re-working service

  

Basic Properties

Table 1. Chemical and Structural Properties

Crystal Structure Orthorhombic, Space group Pna21, Point group mm2
Lattice Parameter a = 6.404 Å, b = 10.616 Å, c = 12.814 Å, Z = 8
Melting Point About 1172 ℃
Mohs Hardness 5
Density 3.01 g/cm3
Thermal Conductivity 13 W/m/K
Thermal Expansion Coefficients αx = 11 × 10-6 /℃, α= 9 × 10-6 /℃, αz = 0.6 × 10-6 /℃

 

Table 2. Optical and Nonlinear Optical Properties

Transparency Range 350-4500 nm
SHG Phase Matchable Range 497-1800 nm  (Type Ⅱ)
Therm-optic Coefficient ( λ in μm) dnx/dT = 1.1×10-5 /℃
dny/dT = 1.3×10-5 /℃
dnz/dT = 1.6×10-5 /℃
Absorption Coefficients < 0.1% /cm at 1064 nm, < 1% /cm at 532 nm
For Type Ⅱ SHG of a Nd:YAG laser at 1064 nm Temperature Acceptance 24 ℃·cm
Spectral Acceptance 0.56 nm·cm
Angular Acceptance 14.2 mrad·cm (Φ);55.3mrad·cm (θ)
Walk-off Angle 0.55 °
NLO Coefficients deff (Ⅱ) ≈ (d24 - d15) sin2Φ sin2θ - (d15 sin2Φ + d24 cos2Φ) sinθ
Non-vanished NLO Susceptibilities

d31 = 6.5 pm/V              d24 = 7.6 pm/V 

d32 = 5 pm/V                 d15 = 6.1 pm/V 

d33 = 13.7 pm/V

Sellmeier Equations (λ in μm) nx2 = 3.0065 + 0.03901 / (λ2 - 0.04251) - 0.01327 λ2
ny2 = 3.0333 + 0.04154 / (λ2 - 0.04547) - 0.01408 λ2
nz= 3.3134 + 0.05694 / (λ2 - 0.05658) - 0.01682 λ2

Electro-optic Coefficients:

r13

r23

r33

r51

r42

Low frequency (pm/V)     High frequency (pm/V)

 9.5                                    8.8

 15.7                                  13.8

  36.3                                  35.0

 7.3                                    6.9

  9.3                                    8.8

Dielectric Constant ɛeff = 13

 

 

Applications for SHG and SFG of Nd: Lasers

KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. Up to now, Nd:lasers that use KTP for intra-cavity and extra-cavity frequency doubling have become a preferred pumping sources for visible dye lasers and tunable Ti:sapphire lasers as well as their amplifiers. They are also used as green sources for many research and industry applications.

Close to 80% conversion efficiency and 700 mJ green laser were obtained with a 900 mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.

8 W green laser was generated from a 15 W LD pumped Nd:YVO4 with intra-cavity KTP.

KTP is also being used for intracavity mixing of 0.81 µm diode and 1.064 µm Nd:YAG laser to generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3 µm to produce red light.

 

Fig. 1 Type Ⅱ KTP SHG in XY Plane

 

Fig.2 Type Ⅱ SHG in XZ Plane

  

Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600 nm) to mid-IR (4500 nm), as shown in Fig. 3 and Fig .4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 108 Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064 nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120 nm.

 

Fig.3 OPO pumped at 532 in X-Z plane

 

Fig.4 OPO pumped at 532 in X-Y plane

 

The novel developed application is the non-critical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7 µm to 1 µm, the output can cover from 1.04 µm to 1.45 µm (signal) and from 2.15 µm to 3.2 µm (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

 

Fig.5 Type Ⅱ NCPM OPO

  

Applications for E-O Devices

In addition to unique features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO3. These excellent properties make KTP extremely useful to various E-O devices. Table 1 is a comparison of KTP with other E-O modulator materials commonly used:

 

Table 3. Electro-Optic Modulator Materials

Materials ε N Phase Amplitude

R

(pm/V)

K

(10-6/)

N7r2/ε 

(pm/V)2

r

(pm/V)

K

(10-6/)

n7r2/ε 

(pm/V)2

KTP 15.42 1.8 35 31 6130 27 11.7 3650
LiNbO3 27.9 2.2 8.8 82 7410 20.1 42 3500
KD*P 48 1.47 24 9 178 24 8 178
LiIO3 5.9 1.74 6.4 24 335 1.2 15 124

 

 

From Table 1, clearly, KTP is expected to replace LiNbO3 crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (˃15 GHZ), thermal and mechanical stability, and low loss, etc.

 

Applications for Optical Waveguides

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 2 gives a comparison of KTP with other optical waveguide materials. Recently, a type Ⅱ SHG conversion efficiency of 20% /W/cm2 was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguide have been applied to the type Ⅰ quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960 mm, and directly doubled diode lasers for the 400-430 nm outputs.

 

Table 4. Electro-Optic Waveguide Materials

Materials r (pm/V) n εeff (ε11ε33)1/2 n3r/εeff (pm/V)
KTP 35 1.86 13 17.3
LiNbO3 29 2.2 37 8.3
KNbO3 25 2.17 30 9.2
BNN 56 2.22 86 7.1
BN 56-1340 2.22 119-3400 5.1-0.14
GaAs 1.2 3.6 14 4
BaTiO3 28 2.36 373 1

 

 

KTP's Parameters

 

Table 5. Specifications

Dimension Tolerance (W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.5/-0.1 mm)   (L2.5 mm)(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.1/-0.1 mm)   (L2.5 mm)
Clear Aperture  Central 90% of the diameter
Internal Quality No visible scattering paths or centers when inspected by a 50 mW green laser
Surface Quality (Scratch/Dig) 10/5 to MIL-PRF-13830B
Flatness ≦ λ/8 @633 nm
Transmitted Wavefront Distortion ≦ λ/8 @633 nm
Parallelism 20 arc sec
Perpendicularity ≦ 15 arc min
Angle Tolerance ≦ 0.25 °
Chamfer ≦ 0.2 mm × 45 °
Chip ≦ 0.1 mm
Damage Threshold

1 GW/cm2 @1064 nm, 10 ns, 10 Hz (AR-coated)

0.3 GW/cm2 @532 nm, 10 ns, 10 Hz (AR-coated)

Quality Warranty Period One year under proper use.

 

 

AR-coatings

CASTECH provides the following AR-coatings:

  •   Dual Band AR-coating (DBAR) of KTP for SHG of 1064 nm; low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
  •   High reflectivity coating: HR 1064 nm & HT 532 nm, R˃99.8% @1064nm, T˃90% @532 nm
  •   Broad Band AR-coating (BBAR) of KTP for OPO applications
  •   High damage threshold (˃300 MW/cm2 at both wavelengths)
  •   Long durability
  •   Other coatings are available upon request
Keyword:
nonlinear crystal
KTP
AR-coating
extra- intra- cavity frequency doubled
SHG
Scan the QR code to read on your phone

Products

KTP - Potassium Titanyl Phosphate
4
  • KTP - Potassium Titanyl Phosphate

  • KTP is the most commonly used material for SHG of Nd-doped lasers, and also for SFG to generate blue&red light. In addition to these functions, it is also applied to OPO, E-O devices and waveguides.
Description
Cas'Tech Class
Parameters
Download

Introduction

Potassium Titanyl Phosphate (KTiOPO4 or KTP) is widely used in both commercial and military lasers including laboratory and medical system, range-finders, LiDAR, optical communication and industrial systems.

  

CASTECH's KTP is featured by

  •   Large nonlinear optical coefficient
  •   Wide angular bandwidth and small walk-off angle
  •   Broad temperature and spectral bandwidth
  •   High electro-optic coefficient and low dielectric constant
  •   Large figure of merit
  •   Nonhydroscopic, chemically and mechanically stable

  

CASTECH offers

  •   Strict quality control
  •   Large crystal size up to 20 × 20 × 40 mm3 and maximum length of 60 mm
  •   Quick delivery (15 working days for polished only, 20 working days for coated)
  •   Unbeatable price and quantity discount
  •   Technical support
  •   AR-coating, mounting and re-working service

  

Basic Properties

Table 1. Chemical and Structural Properties

Crystal Structure Orthorhombic, Space group Pna21, Point group mm2
Lattice Parameter a = 6.404 Å, b = 10.616 Å, c = 12.814 Å, Z = 8
Melting Point About 1172 ℃
Mohs Hardness 5
Density 3.01 g/cm3
Thermal Conductivity 13 W/m/K
Thermal Expansion Coefficients αx = 11 × 10-6 /℃, α= 9 × 10-6 /℃, αz = 0.6 × 10-6 /℃

 

Table 2. Optical and Nonlinear Optical Properties

Transparency Range 350-4500 nm
SHG Phase Matchable Range 497-1800 nm  (Type Ⅱ)
Therm-optic Coefficient ( λ in μm) dnx/dT = 1.1×10-5 /℃
dny/dT = 1.3×10-5 /℃
dnz/dT = 1.6×10-5 /℃
Absorption Coefficients < 0.1% /cm at 1064 nm, < 1% /cm at 532 nm
For Type Ⅱ SHG of a Nd:YAG laser at 1064 nm Temperature Acceptance 24 ℃·cm
Spectral Acceptance 0.56 nm·cm
Angular Acceptance 14.2 mrad·cm (Φ);55.3mrad·cm (θ)
Walk-off Angle 0.55 °
NLO Coefficients deff (Ⅱ) ≈ (d24 - d15) sin2Φ sin2θ - (d15 sin2Φ + d24 cos2Φ) sinθ
Non-vanished NLO Susceptibilities

d31 = 6.5 pm/V              d24 = 7.6 pm/V 

d32 = 5 pm/V                 d15 = 6.1 pm/V 

d33 = 13.7 pm/V

Sellmeier Equations (λ in μm) nx2 = 3.0065 + 0.03901 / (λ2 - 0.04251) - 0.01327 λ2
ny2 = 3.0333 + 0.04154 / (λ2 - 0.04547) - 0.01408 λ2
nz= 3.3134 + 0.05694 / (λ2 - 0.05658) - 0.01682 λ2

Electro-optic Coefficients:

r13

r23

r33

r51

r42

Low frequency (pm/V)     High frequency (pm/V)

 9.5                                    8.8

 15.7                                  13.8

  36.3                                  35.0

 7.3                                    6.9

  9.3                                    8.8

Dielectric Constant ɛeff = 13

 

 

Applications for SHG and SFG of Nd: Lasers

KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. Up to now, Nd:lasers that use KTP for intra-cavity and extra-cavity frequency doubling have become a preferred pumping sources for visible dye lasers and tunable Ti:sapphire lasers as well as their amplifiers. They are also used as green sources for many research and industry applications.

Close to 80% conversion efficiency and 700 mJ green laser were obtained with a 900 mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.

8 W green laser was generated from a 15 W LD pumped Nd:YVO4 with intra-cavity KTP.

KTP is also being used for intracavity mixing of 0.81 µm diode and 1.064 µm Nd:YAG laser to generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3 µm to produce red light.

 

Fig. 1 Type Ⅱ KTP SHG in XY Plane

 

Fig.2 Type Ⅱ SHG in XZ Plane

  

Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600 nm) to mid-IR (4500 nm), as shown in Fig. 3 and Fig .4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 108 Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064 nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120 nm.

 

Fig.3 OPO pumped at 532 in X-Z plane

 

Fig.4 OPO pumped at 532 in X-Y plane

 

The novel developed application is the non-critical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7 µm to 1 µm, the output can cover from 1.04 µm to 1.45 µm (signal) and from 2.15 µm to 3.2 µm (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

 

Fig.5 Type Ⅱ NCPM OPO

  

Applications for E-O Devices

In addition to unique features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO3. These excellent properties make KTP extremely useful to various E-O devices. Table 1 is a comparison of KTP with other E-O modulator materials commonly used:

 

Table 3. Electro-Optic Modulator Materials

Materials ε N Phase Amplitude

R

(pm/V)

K

(10-6/)

N7r2/ε 

(pm/V)2

r

(pm/V)

K

(10-6/)

n7r2/ε 

(pm/V)2

KTP 15.42 1.8 35 31 6130 27 11.7 3650
LiNbO3 27.9 2.2 8.8 82 7410 20.1 42 3500
KD*P 48 1.47 24 9 178 24 8 178
LiIO3 5.9 1.74 6.4 24 335 1.2 15 124

 

 

From Table 1, clearly, KTP is expected to replace LiNbO3 crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (˃15 GHZ), thermal and mechanical stability, and low loss, etc.

 

Applications for Optical Waveguides

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 2 gives a comparison of KTP with other optical waveguide materials. Recently, a type Ⅱ SHG conversion efficiency of 20% /W/cm2 was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguide have been applied to the type Ⅰ quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960 mm, and directly doubled diode lasers for the 400-430 nm outputs.

 

Table 4. Electro-Optic Waveguide Materials

Materials r (pm/V) n εeff (ε11ε33)1/2 n3r/εeff (pm/V)
KTP 35 1.86 13 17.3
LiNbO3 29 2.2 37 8.3
KNbO3 25 2.17 30 9.2
BNN 56 2.22 86 7.1
BN 56-1340 2.22 119-3400 5.1-0.14
GaAs 1.2 3.6 14 4
BaTiO3 28 2.36 373 1

 

 

KTP's Parameters

 

Table 5. Specifications

Dimension Tolerance (W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.5/-0.1 mm)   (L2.5 mm)(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.1/-0.1 mm)   (L2.5 mm)
Clear Aperture  Central 90% of the diameter
Internal Quality No visible scattering paths or centers when inspected by a 50 mW green laser
Surface Quality (Scratch/Dig) 10/5 to MIL-PRF-13830B
Flatness ≦ λ/8 @633 nm
Transmitted Wavefront Distortion ≦ λ/8 @633 nm
Parallelism 20 arc sec
Perpendicularity ≦ 15 arc min
Angle Tolerance ≦ 0.25 °
Chamfer ≦ 0.2 mm × 45 °
Chip ≦ 0.1 mm
Damage Threshold

1 GW/cm2 @1064 nm, 10 ns, 10 Hz (AR-coated)

0.3 GW/cm2 @532 nm, 10 ns, 10 Hz (AR-coated)

Quality Warranty Period One year under proper use.

 

 

AR-coatings

CASTECH provides the following AR-coatings:

  •   Dual Band AR-coating (DBAR) of KTP for SHG of 1064 nm; low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
  •   High reflectivity coating: HR 1064 nm & HT 532 nm, R˃99.8% @1064nm, T˃90% @532 nm
  •   Broad Band AR-coating (BBAR) of KTP for OPO applications
  •   High damage threshold (˃300 MW/cm2 at both wavelengths)
  •   Long durability
  •   Other coatings are available upon request

Related Products

Inquiry List

Product information

Product serial number
Thumbnail
Name of product
Retail price
Expected unit price
*Order quantity
Operation
Product serial number:
KTP - Potassium Titanyl Phosphate
Retail price: 0.0
* Expected unit price
*Order quantity
-+
Remove

Contact information

Basic information
Method of contact and profession
Company information

Add Other Product X

Product categories:
All products
Selected 0 Each
castech
castech
castech
Customer message

Copyright© CASTECH Inc. all rights reserved   Min ICP No. 06000911

Search 

搜索
Search

相关文件

Previous page
1