language
中国
韩国
韩国
韩国
韩国
韩国

PRODUCTS

 

MESSAGES

Username used for comment:
Customer message
Description:
Customer message

Related Items

/
/
/
-
KTP - Potassium Titanyl Phosphate
1/1
Number of views:
1000

KTP - Potassium Titanyl Phosphate

KTP is the most commonly used material for SHG of Nd-doped lasers, and also for SFG to generate blue&red light. In addition to these functions, it is also applied to OPO, E-O devices and waveguides.
Number of views:
1000
Quantity
-
+
1
Description
Parameters
Cas'Tech Class
Parameters

Introduction

Potassium Titanyl Phosphate (KTiOPO4 or KTP) is widely used in both commercial and scientific research including laboratory and medical system, range-finders, LiDAR, optical communication and industrial systems.

  

CASTECH's KTP is featured by

  • Large nonlinear optical coefficient
  • Wide angular bandwidth and small walk-off angle
  • Broad temperature and spectral bandwidth
  • High electro-optic coefficient and low dielectric constant
  • Large figure of merit
  • Nonhydroscopic, chemically and mechanically stable.

  

CASTECH offers

  • Strict quality control
  • Large crystal size up to 20 × 20 × 40 mm3 and maximum length of 60 mm
  • Quick delivery (15 working days for polished only, 20 working days for coated)
  • Unbeatable price and quantity discount
  • Technical support
  • AR-coating, mounting and re-working service

  

Basic Properties

Table 1. Chemical and Structural Properties

Crystal Structure

Orthorhombic, Space group Pna21, Point group mm2

Lattice Parameter

a = 6.404 Å, b = 10.616 Å, c = 12.814 Å, Z = 8

Melting Point

About 1172 ℃

Mohs Hardness

5 Mohs

Density

3.01 g/cm3

Thermal Conductivity

13 W/m/K

Thermal Expansion Coefficients

αx = 11 × 10-6 /℃, αy = 9 × 10-6 /℃, αz = 0.6 × 10-6 /℃


 

Table 2. Optical and Nonlinear Optical Properties

Transparency Range

350-4500 nm

SHG Phase Matchable Range

497-1800 nm  (Type Ⅱ)

Therm-optic Coefficient ( λ in μm)

dnx/dT = 1.1×10-5 /℃

dny/dT = 1.3×10-5 /℃

dnz/dT = 1.6×10-5 /℃

Absorption Coefficients

<0.1% /cm at 1064 nm, <1% /cm at 532 nm

For Type Ⅱ SHG of a Nd:YAG laser at 1064 nm

Temperature Acceptance

24 ℃·cm

Spectral Acceptance

0.56 nm·cm

Angular Acceptance

14.2 mrad·cm (Φ);55.3mrad·cm (θ)

Walk-off Angle

0.55 °

NLO Coefficients

deff (Ⅱ) ≈ (d24 - d15) sin2Φ sin2θ - (d15 sin2Φ + d24 cos2Φ) sinθ

Non-vanished NLO Susceptibilities

d31 = 6.5 pm/V              d24 = 7.6 pm/V 

d32 = 5 pm/V                 d15 = 6.1 pm/V 

d33 = 13.7 pm/V

Sellmeier Equations (λ in μm)

nx= 3.0065 + 0.03901 / (λ2 - 0.04251) - 0.01327 λ2

ny2 = 3.0333 + 0.04154 / (λ2 - 0.04547) - 0.01408 λ2

nz2 = 3.3134 + 0.05694 / (λ2 - 0.05658) - 0.01682 λ2

Electro-optic Coefficients:

r13

r23

r33

r51

r42

Low frequency (pm/V)     High frequency (pm/V)

          9.5                                    8.8

        15.7                                  13.8

        36.3                                  35.0

          7.3                                    6.9

          9.3                                    8.8

Dielectric Constant

ɛeff = 13

 

Applications for SHG and SFG of Nd: Lasers

KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. Up to now, Nd:lasers that use KTP for intra-cavity and extra-cavity frequency doubling have become a preferred pumping sources for visible Dye lasers and tunable Ti:sapphire lasers as well as their amplifiers. They are also used as green sources for many research and industry applications.

  • Close to 80% conversion efficiency and 700 mJ green laser were obtained with a 900 mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.
  • 8 W green laser was generated from a 15 W LD pumped Nd:YVO4 with intra-cavity KTP.

KTP is also being used for intracavity mixing of 0.81 µm diode and 1.064 µm Nd:YAG laser to  generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3 µm to produce red light.

 

Fig. 1 Type Ⅱ KTP SHG in XY Plane

 

Fig.2 Type Ⅱ SHG in XZ Plane

  

Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600 nm) to mid-IR (4500 nm), as shown in Fig. 3 and Fig .4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 108 Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064 nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120 nm.

 

Fig.3 OPO pumped at 532 in X-Z plane

 

Fig.4 OPO pumped at 532 in X-Y plane

 

The novel developed application is the non-critical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7 µm to 1 µm, the output can cover from 1.04 µm to 1.45 µm (signal) and from 2.15 µm to 3.2 µm (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

 

Fig.5 Type Ⅱ NCPM OPO

  

Applications for E-O Devices

In addition to unique features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO3. These excellent properties make KTP extremely useful to various E-O devices. Table 3 is a comparison of KTP with other E-O modulator materials commonly used:

 

Table 3. Electro-Optic Modulator Materials

Materials

ε

N

Phase

Amplitude

R

(pm/V)

K

(10-6/℃)

N7r2/ε (pm/V)2

r

(pm/V)

K

(10-6/℃)

n7r2/ε 

(pm/V)2

KTP

15.42 

1.80 

35.0 

31 

6130 

27.0 

11.7 

3650 

LiNbO3

27.90 

2.20 

8.8 

82 

7410 

20.1 

42.0 

3500 

KD*P

48.00 

1.47 

24.0 

178 

24.0 

8.0 

178 

LiIO3

5.90 

1.74 

6.4 

24 

335 

1.2 

15.0 

124 

 

From Table 3, clearly, KTP is expected to replace LiNbO3 crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (˃15 GHZ), thermal and mechanical stability, and low loss, etc.

 

Applications for Optical Waveguides

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 4 gives a comparison of KTP with other optical waveguide materials. Recently, a type Ⅱ SHG conversion efficiency of 20% /W/cm2 was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguide have been applied to the type Ⅰ quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960 mm, and directly doubled diode lasers for the 400-430 nm outputs.

 

Table 4. Electro-Optic Waveguide Materials

Materials

r (pm/V)

n

εeff 11ε33)1/2

n3r/εeff (pm/V)

KTP

35 

1.86 

13 

17.30 

LiNbO3

29 

2.20 

37 

8.30 

KNbO3

25 

2.17 

30 

9.20 

BNN

56 

2.22 

86 

7.10 

BN

56-1340

2.22 

119-3400

5.1-0.14

GaAs

1.2 

3.60 

14 

4.00 

BaTiO3

28 

2.36 

373 

1.00 

 

KTP's Parameters

Table 5. Specifications

Dimension Tolerance

(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.5/-0.1 mm) × (L≧2.5 mm)

(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.1/-0.1 mm) × (L<2.5 mm)

Clear Aperture 

Central 90% of the diameter

Internal Quality

No visible scattering paths or centers when inspected by a 50 mW green laser

Surface Quality (Scratch/Dig)

10/5 to MIL-PRF-13830B

Flatness

≦λ/8 @633 nm

Transmitted Wavefront Distortion

≦λ/8 @633 nm

Parallelism

20 arc sec

Perpendicularity

≦15 arc min

Angle Tolerance

≦0.25 °

Chamfer

≦0.2 mm × 45 °

Chip

≦0.1 mm

Damage Threshold

>1 GW/cm2 @1064 nm, 10 ns, 10 Hz (AR-coated)

>0.3 GW/cm2 @532 nm, 10 ns, 10 Hz (AR-coated)

Quality Warranty Period

One year under proper use.

AR-coatings

CASTECH provides the following AR-coatings:

  • Dual Band AR-coating (DBAR) of KTP for SHG of 1064 nm; low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
  • High reflectivity coating: HR 1064 nm & HT 532 nm, R˃99.8% @1064nm, T˃90% @532 nm
  • Broad Band AR-coating (BBAR) of  KTP for OPO applications.
  • High damage threshold (˃300 MW/cm2 at both wavelengths)
  • Long durability
  • Other coatings are available upon  request.
Keyword:
nonlinear crystal
KTP
AR-coating
extra- intra- cavity frequency doubled
SHG
Scan the QR code to read on your phone

Products

KTP - Potassium Titanyl Phosphate
4
  • KTP - Potassium Titanyl Phosphate

  • KTP is the most commonly used material for SHG of Nd-doped lasers, and also for SFG to generate blue&red light. In addition to these functions, it is also applied to OPO, E-O devices and waveguides.
Description
Cas'Tech Class
Parameters
Download

Introduction

Potassium Titanyl Phosphate (KTiOPO4 or KTP) is widely used in both commercial and scientific research including laboratory and medical system, range-finders, LiDAR, optical communication and industrial systems.

  

CASTECH's KTP is featured by

  • Large nonlinear optical coefficient
  • Wide angular bandwidth and small walk-off angle
  • Broad temperature and spectral bandwidth
  • High electro-optic coefficient and low dielectric constant
  • Large figure of merit
  • Nonhydroscopic, chemically and mechanically stable.

  

CASTECH offers

  • Strict quality control
  • Large crystal size up to 20 × 20 × 40 mm3 and maximum length of 60 mm
  • Quick delivery (15 working days for polished only, 20 working days for coated)
  • Unbeatable price and quantity discount
  • Technical support
  • AR-coating, mounting and re-working service

  

Basic Properties

Table 1. Chemical and Structural Properties

Crystal Structure

Orthorhombic, Space group Pna21, Point group mm2

Lattice Parameter

a = 6.404 Å, b = 10.616 Å, c = 12.814 Å, Z = 8

Melting Point

About 1172 ℃

Mohs Hardness

5 Mohs

Density

3.01 g/cm3

Thermal Conductivity

13 W/m/K

Thermal Expansion Coefficients

αx = 11 × 10-6 /℃, αy = 9 × 10-6 /℃, αz = 0.6 × 10-6 /℃


 

Table 2. Optical and Nonlinear Optical Properties

Transparency Range

350-4500 nm

SHG Phase Matchable Range

497-1800 nm  (Type Ⅱ)

Therm-optic Coefficient ( λ in μm)

dnx/dT = 1.1×10-5 /℃

dny/dT = 1.3×10-5 /℃

dnz/dT = 1.6×10-5 /℃

Absorption Coefficients

<0.1% /cm at 1064 nm, <1% /cm at 532 nm

For Type Ⅱ SHG of a Nd:YAG laser at 1064 nm

Temperature Acceptance

24 ℃·cm

Spectral Acceptance

0.56 nm·cm

Angular Acceptance

14.2 mrad·cm (Φ);55.3mrad·cm (θ)

Walk-off Angle

0.55 °

NLO Coefficients

deff (Ⅱ) ≈ (d24 - d15) sin2Φ sin2θ - (d15 sin2Φ + d24 cos2Φ) sinθ

Non-vanished NLO Susceptibilities

d31 = 6.5 pm/V              d24 = 7.6 pm/V 

d32 = 5 pm/V                 d15 = 6.1 pm/V 

d33 = 13.7 pm/V

Sellmeier Equations (λ in μm)

nx= 3.0065 + 0.03901 / (λ2 - 0.04251) - 0.01327 λ2

ny2 = 3.0333 + 0.04154 / (λ2 - 0.04547) - 0.01408 λ2

nz2 = 3.3134 + 0.05694 / (λ2 - 0.05658) - 0.01682 λ2

Electro-optic Coefficients:

r13

r23

r33

r51

r42

Low frequency (pm/V)     High frequency (pm/V)

          9.5                                    8.8

        15.7                                  13.8

        36.3                                  35.0

          7.3                                    6.9

          9.3                                    8.8

Dielectric Constant

ɛeff = 13

 

Applications for SHG and SFG of Nd: Lasers

KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. Up to now, Nd:lasers that use KTP for intra-cavity and extra-cavity frequency doubling have become a preferred pumping sources for visible Dye lasers and tunable Ti:sapphire lasers as well as their amplifiers. They are also used as green sources for many research and industry applications.

  • Close to 80% conversion efficiency and 700 mJ green laser were obtained with a 900 mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.
  • 8 W green laser was generated from a 15 W LD pumped Nd:YVO4 with intra-cavity KTP.

KTP is also being used for intracavity mixing of 0.81 µm diode and 1.064 µm Nd:YAG laser to  generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3 µm to produce red light.

 

Fig. 1 Type Ⅱ KTP SHG in XY Plane

 

Fig.2 Type Ⅱ SHG in XZ Plane

  

Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600 nm) to mid-IR (4500 nm), as shown in Fig. 3 and Fig .4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 108 Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064 nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120 nm.

 

Fig.3 OPO pumped at 532 in X-Z plane

 

Fig.4 OPO pumped at 532 in X-Y plane

 

The novel developed application is the non-critical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7 µm to 1 µm, the output can cover from 1.04 µm to 1.45 µm (signal) and from 2.15 µm to 3.2 µm (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

 

Fig.5 Type Ⅱ NCPM OPO

  

Applications for E-O Devices

In addition to unique features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO3. These excellent properties make KTP extremely useful to various E-O devices. Table 3 is a comparison of KTP with other E-O modulator materials commonly used:

 

Table 3. Electro-Optic Modulator Materials

Materials

ε

N

Phase

Amplitude

R

(pm/V)

K

(10-6/℃)

N7r2/ε (pm/V)2

r

(pm/V)

K

(10-6/℃)

n7r2/ε 

(pm/V)2

KTP

15.42 

1.80 

35.0 

31 

6130 

27.0 

11.7 

3650 

LiNbO3

27.90 

2.20 

8.8 

82 

7410 

20.1 

42.0 

3500 

KD*P

48.00 

1.47 

24.0 

178 

24.0 

8.0 

178 

LiIO3

5.90 

1.74 

6.4 

24 

335 

1.2 

15.0 

124 

 

From Table 3, clearly, KTP is expected to replace LiNbO3 crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (˃15 GHZ), thermal and mechanical stability, and low loss, etc.

 

Applications for Optical Waveguides

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 4 gives a comparison of KTP with other optical waveguide materials. Recently, a type Ⅱ SHG conversion efficiency of 20% /W/cm2 was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguide have been applied to the type Ⅰ quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960 mm, and directly doubled diode lasers for the 400-430 nm outputs.

 

Table 4. Electro-Optic Waveguide Materials

Materials

r (pm/V)

n

εeff 11ε33)1/2

n3r/εeff (pm/V)

KTP

35 

1.86 

13 

17.30 

LiNbO3

29 

2.20 

37 

8.30 

KNbO3

25 

2.17 

30 

9.20 

BNN

56 

2.22 

86 

7.10 

BN

56-1340

2.22 

119-3400

5.1-0.14

GaAs

1.2 

3.60 

14 

4.00 

BaTiO3

28 

2.36 

373 

1.00 

 

KTP's Parameters

Table 5. Specifications

Dimension Tolerance

(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.5/-0.1 mm) × (L≧2.5 mm)

(W ± 0.1 mm) × (H ± 0.1 mm) × (L + 0.1/-0.1 mm) × (L<2.5 mm)

Clear Aperture 

Central 90% of the diameter

Internal Quality

No visible scattering paths or centers when inspected by a 50 mW green laser

Surface Quality (Scratch/Dig)

10/5 to MIL-PRF-13830B

Flatness

≦λ/8 @633 nm

Transmitted Wavefront Distortion

≦λ/8 @633 nm

Parallelism

20 arc sec

Perpendicularity

≦15 arc min

Angle Tolerance

≦0.25 °

Chamfer

≦0.2 mm × 45 °

Chip

≦0.1 mm

Damage Threshold

>1 GW/cm2 @1064 nm, 10 ns, 10 Hz (AR-coated)

>0.3 GW/cm2 @532 nm, 10 ns, 10 Hz (AR-coated)

Quality Warranty Period

One year under proper use.

AR-coatings

CASTECH provides the following AR-coatings:

  • Dual Band AR-coating (DBAR) of KTP for SHG of 1064 nm; low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
  • High reflectivity coating: HR 1064 nm & HT 532 nm, R˃99.8% @1064nm, T˃90% @532 nm
  • Broad Band AR-coating (BBAR) of  KTP for OPO applications.
  • High damage threshold (˃300 MW/cm2 at both wavelengths)
  • Long durability
  • Other coatings are available upon  request.

Related Products

Inquiry List

Product information

Product serial number
Thumbnail
Name of product
Retail price
Expected unit price
*Order quantity
Operation
Product serial number:
KTP - Potassium Titanyl Phosphate
Retail price: 0.0
* Expected unit price
*Order quantity
-+
Remove

Contact information

Basic information
Method of contact and profession
Company information

Add Other Product X

Product categories:
All products
Selected 0 Each
castech
castech
castech
Customer message

Copyright© CASTECH Inc. all rights reserved   Min ICP No. 06000911

Search 

搜索
Search