CASTECH
Yb:CALGO - Ytterbium Doped Calcium Gadolinium Aluminate
+
  • Yb:CALGO - Ytterbium Doped Calcium Gadolinium Aluminate

Yb:CALGO - Ytterbium Doped Calcium Gadolinium Aluminate

Yb:CALGO is a promising new laser gain material with low quantum defect (1.5%) that apples to ultra-fast pulses. Its thermal conductivity is k=6.7W/m/K, making it suitable for high-power laser use.

Keyword:

laser crystal Yb:CALGO Yb:CaGdAlO4 ultra-short pulse low quantum defect

Yb:CALGO - Ytterbium Doped Calcium Gadolinium Aluminate

Category:

  • Description
  • Cas'Tech Class
  • Parameters
  • Introduction

    Ytterbium Doped Calcium Gadolinium Aluminate (Yb:CaGdAlO4 or Yb:CALGO) is a promising new laser gain material which possess several important advantages. The crystal structure of CALGO is tetragonal. When it is pumped at 979 nm under π configuration, we can get broad emission spectra from 994 nm to 1050 nm in σ configuration. This implies a very low quantum defect (down to 1.5%) and gives a good expectation of obtaining ultra-fast pulse. In addition, Yb:CALGO also has a thermal conductivity of up to k=6.7 W/m/K, making it suitable for high-power laser applications.

     

    CASTECH’s Yb:CaGdAlO4 is featured by

      High absorption coefficient @979 nm

      High stimulated emission cross section

      Low laser threshold

      Extremely low quantum defect

      Broad output @994-1050 nm

      High slope efficiency with diode pumping (up to 55%)

      Various Yb-doping concentration

        Customizable heat sink assembly

     

     

    Applications

     

    • Over 5.5 W output power is obtained by 23 W incident pumping diode laser with 10% output coupler;

    • Output power as high as 12.5 W and 94 fs pulses for 28 W pumping power was reported.

     

    Table 1. Basic Properties                

    Crystal StructureTetragonal
    Point groupI4/mm
    Lattice Parametera = 3.6585 Å, c  = 11.978 Å
    Melting Point1850 ℃
    Mohs Hardness6 Mohs
    Density4.8 g/cm3
    Thermal ConductivityK[001] = 6.3 W/m/K, K[100] = 6.9 W/m/K
    Thermal Expansion Coefficients10.1×10-6 /K (∥a), 16.2 ×10-6 /K (∥c)
    Laser Wavelength994-1050 nm
    Absorption Wavelength979 nm

    Absorption Cross Section

    (π configuration at 979 nm)

    2.7×10-20 cm2

     

    Table 2. Specifications of Yb: CaGdAlO4

    Orientationa or c
    Standard Dopant ConcentrationYb: 1, 2, 3, 5 at.%
    Maximum Length50 mm
    Surface Quality (Scratch/Dig)10/5 to MIL-PRF-13830B
    Dimensional Tolerances

    Diameter: ±0.1mm 

    Length: ±0.5 mm

    Parallelism20 arc sec
    Perpendicularity≦15 arc min
    Coating

    AR-1030/980 nm,

    R<0.2% @1030 nm, R<0.5% @980 nm.

    Other coatings are available upon request.


     

    Key words:
    • laser crystal
    • Yb:CALGO
    • Yb:CaGdAlO4
    • ultra-short pulse
    • low quantum defect
  • CasTech Class | Yb:CALGO crystal, a new promising laser crystal for high power ultrafast laser applications

     

     

    I. Ultrafast laser

     

    It is well known that the laser, one of the greatest inventions of the 20th century, has been described as "the brightest light", "the most accurate ruler" and "the fastest knife "[1]. So whats ultrafast lasers?

    To understand ultrafast lasers, we must know what a laser pulse is. A laser pulse is a pulse of light emitted by a laser that works in a pulse mode. To give an analogy, a torch works continuously if the switch is kept on. And if the switch is turned on and off immediately, it is equivalent to emitting a pulse of light.

    A laser pulse can be very short, in the scale of nanosecond, picosecond, femtosecond and even attosecond. The picosecond scale, for example, means that one trillion ultra-short pulses can be emitted in just one second. Generally speaking, a laser with a pulse width of less than 10 ps is called an ultrafast laser.

    Table 1 shows the unit of laser pulse width and the conversions.

     

    Table 1: The unit of laser pulse width and the conversions 

    Unit

    Conversion

    1ms (millisecond)

    10-3 s

    1us (microsecond)

    10-6 s

    1ns (nanosecond)

    10-9 s

    1ps (picosecond)

    10-12 s

    1fs (femtosecond)

    10-15 s

    1as (attosecond)

    10-18 s

     

     

    II. Laser crystals for ultrafast lasers

     

    Currently, there are two main types of laser crystals for ultrafast lasers, namely titanium gemstone (Ti:Al2O3) crystals and Yb3+ ion doped laser crystals. With the development of diode laser (LD) directly pumped all-solid-state lasers (DPSSL) towards high efficiency, miniaturization and integration, Yb3+ ion-doped laser crystals have gradually become a hot spot for ultrafast laser research [1].

    Yb3+ ion-doped disordered crystals combine the orderliness of crystals with the disorderliness of glasses and exhibit excellent spectroscopic properties. Among the Yb3+ ion-doped disordered crystals, aluminate crystals are undoubtedly the best comprehensive of all Yb3+ ion-doped ultrafast crystals [2].

    Yb:CaGdAlO4 (CALGO) has a tetragonal crystal structure, in which the Ca2+ and Gd3+ ions not only with different ionic radii but also different valence states. So the disorder can be divided into two main categories: disorder in the anion-cation bond length and disorder in the valence distribution[1]. Broaden Yb-emission band caused by multiple disorders makes Yb:CALGO crystal standing out from all the other disordered structured laser crystals[2]. Emission spectral width and thermal conductivity are two key factors while choosing laser crystals for ultrafast lasers. The larger the emission spectral width, the smaller pulse width it gets. And the better the thermal conductivity, the higher the output power it yields. A comparison of the thermal conductivity and emission spectral widths of different Yb-doped laser crystals[3-5] are shown in Table 2.

     

    Table 2: Comparison of thermal conductivity and emission spectral width of different Yb-doped laser crystals

    Yb-doped laser crystals

    Thermal conductivity

    (W.m-1.k-1)

    Emission spectrum width

    (nm)

    Yb:YAG

    13

    9

    Yb:KYW

    3.3

    24

    Yb:KGW

    2.6 (a)

    3.4 (c)

    20

    Yb:CaF2

    9.71

    70

    Yb:CALGO

    6.9 (a)

    6.3 (c)

    80

     

    High thermal conductivity and ultra-wide emission spectrum both make Yb:CALGO a promising laser crystal for high power ultrafast laser applications.

     

    III. The history of Yb:CALGO crystals developed by Castech Inc.

     

    CASTECH has started the growth of Yb:CALGO crystals in 2016. In the early stages, the crystal boules were orange in colour and had cloudlike conclusions in most areas (ideally colourless with few conlusion), see Figure 1.

     

    Fig. 1 Yb:CALGO crystal boule with orange color and cloudlike conclusions grown in early stage

     

    The additional unwanted absorption caused by the presence of colour centers and the scattering effect of the inclusions, made Yb:CALGO crystals’ performance by then unable to meet market expectation in terms of laser power and damage threshold. With continuous efforts of CASTECH’s R&D team by making indepth research and repeated experiments on molar ratio, growth temperature field and growth atmosphere, CASTECH can now stably grow colourless, low inclusion level Yb:CALGO crystal boules with dimensions up to dia.30 x 50 mm3 in a stable manner (see Figure 2).

     

    Fig. 2  Colourless Yb:CALGO crystal boule with few inclusions grown currently

     

    The comparison between the colourless (with few inclusions) samples and orange sample (with cloudlike inclusions) in terms of transmittance, output power and laser induced damage threshold shown in Figures 3, 4 and 5, respectively, reflects that there is significant improvement in performance in above aspects.

     

    Transmittance curves (E//C, sample thickness 1.2mm)

    ------Colourless samplewith few inclusions

      ----- Orange sample with cloudlike inclusions

    Wave length (nm)

    Figure. 3 Comparison of the transmittance curves of the Yb:CALGO crystal samples before and after improvement

                                                                                                                                 

    Comparison of output power

                                                                                                               Colourless samplewith few inclusions      Orange sample with cloudlike inclusions

     

     Fig. 4 Comparison of the output power of Yb:CALGO crystal samples before and after improvement

                                                                                                           

    Comparison of damage threshold

                                                                                                                   Colourless samplewith few inclusions   Orange sample with cloudlike inclusions

    Fig. 5 Comparison of damage thresholds of Yb:CALGO crystal samples before and after improvement

     

    IV. Product specifications of Yb:CALGO crystals

     

    Now CASTECH supplies large quantities CALGO crystal components doped with different Yb3+ ion concentrations steadily, with specifications as shown in Table 3.

     

    Table 3: Specifications of Yb:CALGO

    Orientation

    a or c

    Standard dopant concentration (at. %)

    1%, 2%, 3%, 5%

    Max length (mm)

    50

    Length tolerance (mm)

    +0.5/-0.2

    Aperture tolerances (mm)

    +/-0.1

    Parallelism

    <30’’

    Perpendicularity

    <15’

    Surface Quality

    10/5

    Coating

    AR-coated

     

    Reference.

    [1] Qiangqiang Hu. Study on the growth and properties of several disordered structured crystals[D]. Shandong University, 2017.

    [2] Su Xiancui. Study on femtosecond laser properties of ytterbium ion-doped LuAG, CLGA and CGA crystals [D]. Shandong University, 2018.

    [3] Zhang Z B. Study on the growth and laser performance of Yb:YAG crystal [D]. University of Electronic Science and Technology, 2005.

    [4] Druon F, Boudeile J, Zaouter Y, et al. New Yb-doped crystals for high-power and ultrashort lasers[C] // Optics / Photonics in Security and Defence. International Society for Optics and Photonics, 2006:64000D-64000D-16.

    [5]Druon F, Ricaud S, Papadopoulos N, et al. On Yb:CaF2 and Yb:SrF2: review of spectroscopic and themal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials, 2011,489~502.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

Inquiry List

Submit